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Abstract—The object of the paper is to analyse the limit state of a tube subjected to quadruply-combined non-
symmetric loadings: internal pressure, torque, bending moment and axial force. The system of all sixteen equations
of the theory of plasticity is reduced to three by introducing two stress functions ¢, i and plastic modulus H. Itis
solved by means of triple perturbation method under the assumption of small influence of bending, twisting and
tension on the load carrying capacity of the tube subjected to internal pressure.

1. INTRODUCTION

ProOBLEMS of thick-walled tubes subjected to combined loadings in the plastic range have
been given much attention in technical publications. However the problem of the simul-
taneous existence of pressure, bending moment and torque which is so important for
practical applications has not as yet been solved ; all three-dimensional pipe lines are as a
rule exposed to just this kind of combined loading. The problem belongs to the category of
non-symmetrical problems of the theory of plasticity. Solution of a general circularly
symmetrical case: axial force, internal or external pressure, torque as well as tangential
pressures—axial and circumferential, was given by Zyczkowski [9]. A detailed analysis,
followed by deriving effective formulae for stress distribution and limit surface for cases of
three-fold combined load, i.e., torston, tension and pressure difference has been carried out
by Skrzypek and Zyczkowski [6]. The limit carrying capacity of a thick-walled tube in a
similar case of load was also studied by Panarelli and Hodge [3]. This however, was limited
to general formulae in integral form and numerical calculations for a few well-known
individual cases.

Mrowiec and Zyczkowski [1] have discussed the elastic carrying capacity of a thick-
walled pipe-line subjected to internal pressure and bending moment. A complete solution
for the plastic range considering the effect of bending as well as tension upon the limit
capacity of a tube subjected to internal pressure has been given by Zyczkowski [11].

Problems of simultaneous bending or torsion and tension of bars of various cross
sections have been discussed by Zyczkowski [10] and Wnuk [8].

Using the method of small parameter, Piechnik [4] has given effective solutions covering
the effect of bending upon the limit state of a twisted bar of circular cross section, and
Piechnik and Zyczkowski [5] have solved the reverse case of the effect of torsion on the
capacity of bars subjected to large bending. Classification and a detailed review of solutions
of combined loadings problems in the theory of plasticity is given by Zyczkowski [12].

This paper—generalizing the paper [11}—aims to analyze the case of four-fold com-
bined load of thick-walled tube: internal pressure, bending moment, axial force and torque
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in plastic state, as well as to obtain solutions by means of the extended method of smali
parameter.

2. ASSUMPTIONS

In this paper we shall deal exclusively with the analysis of a purely plastic state, namely,
assuming full plastification of the entire cross section of the tube. This assumption being
fulfilled in particular cases (pure bending, tension, internal pressure or torsion) is not
strictly retained in the case of combined load. In fact, when reaching the limit carrying
capacity, some parts of the section still remain in the elastic state. In consequence, it leads to
a discrepancy in fulfilling the boundary condition at the inner radius of the tube. These
discrepancies however are small and will be discussed in detail later on.

Hencky~Ilyushin’s or Levy—Mises’ theory of plasticity will be applied in our solution
(with purely formal substitution of strain velocities instead of strains).

The material is assumed to be perfectly plastic, incompressible and obeying the Huber-
Mises—Hencky’s yield condition.

Our considerations will be carried out in cylindrical coordinates r, 6, z (Fig. 1), remem-
bering that in our case the stresses and strains are independent of the z coordinate.

A S
7
\7 J
M,
/
*// /// ///f

FiG. |

With the above assumptions all 16 equations of the theory of plasticity will be used:
equations of equilibrium
éo, 1014 0,—0

@~+r 69+ r =9
01, 1 0t 7,
rz 4 Z:()’ 2.1
&t @ (2.1)
0t 100y 21,
Trg 1 00y Te:O:

o raof r

yield condition
0,— 602 + (09— 0.)? +(0:—0,)? +6(t]y + 15 +17%) = 205: 2.2
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0, being the yield point at uniaxial tension, physical relations between stresses and strains

plo,—0g) = & —&,
P(09—0z) = €9— &z
2979 = 7Ve:» (2.3)
20t = Vres
20,2 = Yy
@ is the variable plastic modulus: g; stands here for strains (Hencky-Ilyushin) or strain

velocities (Levy—Mises), respectively ;
incompressibility condition

& +ée+e, =0; 2.4)
compatibility conditions [2]
0%,
=0
02 e,
Zl =0,
696r(r)
1 3%, 1 ¢,
R
(2.5)
iiff_:z 1 5‘2( )+1 0 ('559 10 _
2 o0r oo TR\ ) rar

o1 0 0% (1
5;[? Ia'r(""”)] araa( ’”) =0,

aZ 62
56_2’})92“%’6(" Yoz) = 0

3. BASIC EQUATIONS

The solution of the set of equations (2.1)~(2.5) is possible owing to the fact that the first
three compatibility conditions determine uniquely the strain ¢,

&, = C,+ C,rcos(@—0y). (3.1)
Introducing the dimensionless radius p = r/b, parameters proportional to curvature x,
and axial extension 4, respectively, and remembering that for the system of coordinates on

Fig. 1 the angle 6, = 0, the final result is

& = A+xrpcost (3.2)
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Let us now assume, dimensionless stress functions ¢ and ¥ so that the conditions of internal
equilibrium (2.1) are fulfilled identically :

Trp = —(-d)"—ziﬁ), 3.3)

where primes represent differentiation with respect to p and dots with respect to 6.
By using relations (2.3), as well as the incompressibility condition (2.4), a formula for the
stress ¢, is obtained

0'0\/

= £t = (0' + 0), (3.4)

Z
where the dimensionless modulus H proportional to ¢ was introduced for convenience

H=° (3.5)

The stress functions ¢ and y, as well as the modulus H, determine the state of stress and
strain in the discussed problem.

Let us now substitute the relations (3.3) into the yield condition (2.2). After a few
transformations and rearrangements, the first of the three required equations for ¢, and H
is obtained as

fo-to-tol
prop p

1 2
+ (;t//) ] - ]}H2 +3(xk%p? cos®0+2kpicos 0+ 2% = 0. (3.6)

1 2
- E(f" +W)?

Another equation is obtained from the fourth compatibility condition (2.5) by performing
the required differentiation and considering (2.3), (2.4) as well as (3.2) and (3.3)

» 8 > 1
s+ essam [+ = )2

-]

(3.7)



On the limit carrying capacity of a pipe-line cross-section 1207

The two last ones, not yet utilized conditions of compatibility (2.5), contain only strains y,.
and 7,.. Expressing them in terms of the functions ¢ and H, two equations are obtained :

0 &? 0 0* 1
[1=rfyragmere (G5 ozgaa | 74 | =

("apao 60)[ '/’HaoZ[H '”J =0

The principal determinant of the set of equations (3.8) equals zero since

8, 2 a\[o &
7 _ S 0 39
(1 ey )ap ( P 3006 " 36 (ae 3 ae) (3.9)

Thus the equations (3.8) may be written in the following way:

e B

(3.8)

_ (3.10)
Hleos, |1+ 5 iy || -0
and the solution with respect to the expression in braces { } is:
(1+p£)[Hl///]+i|:Hllp':| = Cp. (3.11)
op a0l p
Constant C represents the dimensionless unit angle of twist, since
Cp = ( L4p 3) (gl + 5 [0, (.12)
ap a0
and since for pure torsion
70: = P v =0,
then
C= -3 (3.13)
Finally, equation (3.11) becomes:
(1+p )[Ht//]+ |;H/1)l//'j| +%p = 0. (3.14)

The system of non-linear, second or fourth order partial differential equations (3.6), (3.7),
(3.14) determines the stress functions ¢ and y, as well as the plastic modulus H in the dis-
cussed problem.

4. SOLUTION FOR THE CASE OF HIGH INTERNAL PRESSURE

The solution of the basic system of equations (3.6), (3.7) and (3.14) is obtained by means
of small parameter (perturbation) method, assuming a small effect of bending moment,
axial force and torque on the limit carrying capacity of a pipe-line subjected to internal
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pressure. This method allows to reduce non-linear differential equations to simple linear .
equations ; furthermore, apart from linearization it causes a separation of the system of
equations.

We present namely the solution as series of following parameters: k—proportional to
curvature, A—to unit extension, $—to unit angle of twist. In the limit state of the tube
considered, these parameters may be large, but finally we shall obtain series of parameters
k/D, A/D and §/D, where the constant D corresponds to internal pressure and is also suitably
large. Thus /D, A/D and 8/D may be considered as small.

Weassume the solution in the form:

p=3 Y Y dilp, O'i 9,
i=0 j=0k=0
H=17% ) Y Hjp, 029, (4.1)

]
[=]
[

Il
[=]
=~

i}
(=]

V=3 3 T vinlp, O,

i=0j=0k=0

whilst in the case of pure internal pressure in plane strain condition we have:
booo = 1% In p—3p°,

D
Hogo = F, 4.2)

000 ~ 0,

where D is an indeterminable constant in the fully plastic state. Equations (4.2) correspond
to the classical circularly-symmetrical plastic solution. Much more complicated non-
symmetrical plastic collapse modes were discussed in the paper by Zyczkowski and the
present author [7], but we do not use them here ; they have no influence on the limit carrying
capacity of the tube.

In order to solve the basic set of equations we begin with equation (3.14). Taking into
account that the zero approximation of the function i equals zero, the subsequent functions
Yirinterms of H,_ ;x, H; ;- as wellas H; ;,_, can be obtained successively from this
equation. Thus for particular corrections of function i we get equations of the type:

1 L.
k= —Wint Vi = filp, 0). (4.3)
p p
The general solution of the above equation is assumed in the form of Fourier series :

Vik = Zofn(/’) cos nf + ¥ (p, 0), 4.4)

Yiulp, 8) is a particular solution of the nonhomogeneous equation (4.3). Performing the
required differentiations, the following equation for function f,(p) is obtained:

2

1
i o S = 0, 4.5)
p " p
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and then:
filp) = Cp™, m= I—T\/(l +n?). 4.6)
Substituting (4.6) into {4.3) we obtain finally:
Vi = Y, (Carp" ™Y 4 Cppp ") 08 1+ lp, 0). @7
n=0

Now, we shall proceed to the corrections of the function ¢. Those can be obtained
subsequently from equations (3.6). Note that by substituting ¢og0 and ¥qq¢ into (3.6) the
expression in brackets equals zero, thus

n 1 I 1 .
600 ——®o00 — —3Po00 = L. (4.8)
1Y 1Y

From this equation we can obtain successively ¢;; in terms of function H;_ ;,, H;;_ 4,
H;jx-raswellasy,_ jx, Wi j-1.4Yi k1. In this way we obtain equations of the type

d)ljk d}z;k 2¢uk fijk(p’ 9) (49)

The general solution is assumed, similarly as before, in the form of a series:

bun= 3 filp) cos 0+ Bl ) @.10)

and for the function f,{(p) we have:
2

1 n
W——f+= =0 4.11)
P p
Upon solving the characteristic equation and substituting it into (4.10) the final solution is
obtained :

Gije = Co1 +Co2p?> +(C11p+Cy2pIn p)cos 8
+ Y [Cupcos(y/(n*—1)In p) (4.12)
n=2

+C,2p sin (\/(n* — 1) In p)] cos nf +, u(p, 0)

where ¢, is a particular solution of nonhomogeneous equation (4.9).

In order to determine the functions H;j, let us consider equation (3.7). Substitution of
Pooo into this equation will make the entire second term equal to zero and considering (4.8),
H, can be obtained in terms of ¢;_; ;x, ¢; ;-1 &, ¢: ;.x— 1 Dy means of equations of the type:

. 3 I
H k+ Huk p t]k f;;k(pae)* (413)

Assuming, as before, the general solution in form of a series

Hig= Y, fip)cosnb+H;ulp, 6); (4.14)
n=0
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and solving the equation with respect to function f,(p)
3 n?
VA A f,=0 (4.15)
Pt p
the following solutions for successive corrections of function H are finally obtained:
2

C C C
H = Coy +02+(—~“+121n p) cos ¢
p p P

+ i [C;‘ cos (y/(n* — 1) In p) (4.16)
n=2

Cuz . _
+ pz sin (\/(n*— 1) In p)} cos nf+ Hlp, 0),

where H,u(p, 0) is a particular solution of nonhomogeneous equation (4.13).

Expressions (4.7), (4.12) and (4.16) determine the state of stress and strain in the problem
under consideration. Now we shall apply the boundary conditions.

On the outer radius we expect zero stresses:

p=1; 0, = Trg =T, = 0; 4.17)
introducing stress functions (3.3) we have:

i)+ ¢i3l1) = 0,

, . 4.18)
d)ijk(l)_d)ijk(l) =0,
%J‘k(l) =0
On the inner radius only conditions in integral form could be fulfilled:
1 2n
— o, d6 = —p,
2n 0
4.19)

1 2n
—f Tro d0 - 0,
2nJ

where p is an internal pressure existing in the tube.

Most of the conditions (4.19) are automatically fulfilled in most cases, and the number of
equations (4.18) is as a rule not sufficient to determine all constants in (4.7), (4.12) and (4.16).
In particular cases without bending, the condition of circular symmetry can be applied

dij = Hijo = Yip =0, (4.20)
and the remaining coefficients can be obtained from displacement conditions
reg—u, = 0, 4.21)

because

Uy = f (egr —u, ) dO+ Cy = uy(r) 4.22)
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Using the formulae (4.7), (4.22) and (4.16), and considering boundary conditions (4.18)-
{(4.21), corrections of the functions ¢, ¢ and H can be obtained successively. Some of them
equal zero, as it can easily be shown, so that, confining ourselves to the terms of the second
order only, we have:

100 = Po10 = Poo1 = Po11 = 101 =0,
H100 = Hom = Hgoy = H011 = H101 =0, (4-23)
l;0000 = l/’loo = \//010 = lﬁuo = l//101 = 0.

For the other corrections different from zero we obtain:

| 1
200 = C01+16D2p2—mp8+cllpcosf)
3 7
+ 50802 pcos (/3 lnp)+\/ psin (/3 In p)—p® | cos 26,
3 1
$oz0 = Co1+{gpap” ~ g™
1 1
9002 = Co1 =5 mab” —5epaP™ (4.24)
1 1
$110 = Co1+ C11P+2T)zp lnp-wp cos 0,
1 4
Yoor = C01—@p s
as well as:
_Coz P4
Hgoy = P +2D
Co; 3
Hozo = Cos+—~ ,02 +2Dp
Cos 3 Ci
Hyp0 = C Trp  +——cosf 2
200 o1 +—3 2 +4Dp + p Leos (4.25)

3/3

2
20t~ = N
13D[ P s cos (/3 1n p)+4p3 sin (/3 In p):l cos 20

] cos né,
] cos no
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Constants Cqy, Cgs,...C,y, C,, in (4.25) remain indetermined because there are no
boundary conditions for function H. Some of them could be determined by calculating the
corrections of higher order for functions ¢ and ¥ and applying suitable conditions (4.18).

Based on expressions (4.24), and considering (3.3) and (3.4), we are able to determine the
stresses. Constants Cy,; and C,; have no effect on the distribution of stresses, which can be
presented as follows

2 1 2/3
6, = 59[1np+{§(1— ")+57[—cos( /3lnp)—ism (v/3Inp)
1Y P
'2 o 32
1
_pﬁ:| COSM}D +3(1— D2+'rz(1—p )'Di

11 KA
+§(p—p5)0050ﬁ+...],

) 1
Gy = ﬁ‘{ln p+1 +{§(1 —7p°)+<5 [pcos (/31n p)

V3
23 . K2 PE
_V? In p)— 14p° | cos 205 +3(1 = 5p*) =
) sin (/3 1n p)— 14p :|cos }D2+§( ) )DZ
92 cA.
L(1=7p%)% +7(~——7p )cos 0%+..], (4.26)
¢ - 200 In p+4+3p° cos 0~ +3 24
z = 3 P p D 2P D

J3

1 2
{é 1—4p )+52[;cos(\/3ln p)—Tsm (/3Inp)
.2 )2 92
—‘5p"] cos 20}%; +3(1 3p“) s+ 12(1—4p®)—

D?
1 KA
1= —4p5) sin 0z + ... |,
+7(p p)sm D? ]

260|:i|:z cos (y/31np)— ‘{)3 sin (/3 In p)—7p"]

0= /3] 104
211 kL]
X sin 20%5+§(;—p5) sin H%+ .. .J,
20'0 L9+
/312D

T =0+ ...

Parameters k, 4, 3 in expressions (4.26) do not appear independently but in the form of
relations x/D, A/D and 8/D where D is the indeterminable constant from (4.2). From now
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on we shall use new relations for the sake of convenience:
k/D=R&  AD=1 9D=3 4.27)

Applying (4.25)-(4.26) and introducing physical relations (2.3), formulae for strains could
also be obtained, remembering that in our case the strain ¢, is given by (3.2).

5. LOAD ANALYSIS: INTERACTION (LIMIT) SURFACE

Now we proceed to determine the external loads which cause the fully plastic state of
the tube.
The axial force can be obtained from formulae:

2n 1
szf azdF=b2f dﬂf o.pdp, (5.1)
F Y B

(F being the cross-sectional area of the tube), and introducing dimensionless values and
taking (4.26) into consideration:

J3 1

= N = f3%In-

2noob? i B
— 3 —BH (1= B9 + ...

The dimensionless axial force 2 In 1/ relates to the pure internal pressure in case of plane

strain. It will be more convenient to use a reduced value of the axial force:

+3(1 = HA - §B*(1 — BO)R? (5.2)

A= n-p? ln% = 31— Y- B2 — By (5.3)

— A1 - BHA - LA -G+ ..,

which, assuming small parameters &, A, §, will also be small. The bending moment is
calculated from formulae:

0

1 2n
M, = ff ro,cos 0 dF = b3f p* dpf g cos 0do, (54)
F B

from which, considering (4.26) and performing required integrations, we obtain a dimen-
sionless expression :

m, = 2\/3M = (1—B%%—pX1—B%al+ ... (5.5)

g 7;0? g
Finally the torque

1
M, = ff 1g.r dF = 2nb3f To:02 dp, (5.6)
F B

or, in dimensionless form:

\/3M—21_ﬁ§+..., (5.7

m, = s ==
g Woo'o 3 1-[34
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where W, is the elastic section modulus in torsion

_mb(1-p%

5 (5.8)

Wo

Some complications are connected with calculation of internal pressure. The assump-
tion of full plastification of the whole cross section of the tube leads to variable normal
stresses o, at the internal radius 8. Also, tangential stresses 7,4 are not strictly zero along the
inner perimeter. So we arrive at the problem of how to apply the results obtained by means
of the perturbation method (4.26) for variable pressure along the inner perimeter to a pipe-
line loaded by constant normal internal pressure. It can be done in various approximate
ways.

The simplest way is to take mean values of the obtained expressions for stresses ¢, and
7,6. The internal pressure is now calculated as follows:

1 2n
pm = —EJ‘O O.rlpzﬂ d() (5.9)

where p,, indicates mean value of the pressure. Introducing the dimensionless pressure g,,
and performing the required integration we have

Gm = ﬁpm = lnl—%(l—ﬁ")ﬁl—%(l—ﬂ“)iz—ﬁ(l—ﬁ6)92+ (5.10)
20, B

Expressions (5.2), (5.5), (5.7) and (5.10) represent the limit surface in parametrical way, the
parameters being &, 4, § and, additionally, the ratio of the radii g.

Taking instead of the mean value of p the lower bound of (—,} at p = 8 we may obtain
a lower bound of the internal pressure. Such an approach was used in the paper by
Zyczkowski [11].

The obtained general integrals may also be applied to the formulated problem using the
Trefftz method, since the differential equations are here satisfied exactly in the sense of the
perturbation method and there exists some difficulty with the boundary conditions. Instead
of previously used boundary conditions (4.17) and (4.19) we shall now introduce the con-
dition of least square deviations, namely, minimum of the integral expression

2n
F(Cij) = J;) {O-rT(l)_ar(l)]z+[Tr0T(l)_Tr8(l)]2} do
(5.11)

2n
+ | {lov(B)— o)) +[tr(B) — T.e(B)]*} dO = min,

where indices T indicate the solutions obtained by the Trefftz method and ¢{1), 7,4(1),
a (), 1,6(f) are determined by actual exact boundary conditions, namely,

o(1) = T,4(1) = 1,4(f) = 0
o{f) = —p = const.

(5.12)
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Introducing (4.12) and (5.12) into the formula (5.11) and applying the condition of the
minimum of the function F(C;;), we obtain

2 1—p? -3C 3C 3C +./3C
G’,TZV%[IDP-F{ 8P +[ 21:\/ 22 cos(y/3 In p) 22 p\/ 2Lsin(/3 In p)

31—pY., 1—p°.
—%f] cos20}r€2+ ( 8” 2y 12” 92+ (5.13)

pA-p1_ 2l
+{§|:—1—+ﬁ4;—p :l cos 9}x,1+ ]

Constants C,, and C,, may be calculated from the conditions

JOF OF
ac, = 0, FTo 0, (5.14)
They have, however, no influence on the loadings. Expressions for the other stresses gy, 0
and t1,, may be obtained in a similar way.
Introducing, as previously, dimensionless notations and integrating, we can now
determine the loads. Internal pressure gy, axial force n; and torque m,y are exactly the
same as in formulae (5.3), (5.7) and (5.10),

qr = qm
Ry =N (5.15)
My = My

Only for the bending moment do we obtain a slightly different formula

myr = (1—BOR—[(1—B%)— B — (1 +)R2+ ... (5.16)
Expressions (5.15) and (5.16) represent the parametrical equation of the limit surface
obtained using the Trefftz method, the parameters being as previously «, 4, § and ratio of
radii .
For some practical purposes it may be more convenient to determine the limit surface by
the equation in an explicit form
q = q(n, mg, my), (5.17)

which is obtained by eliminating the parameters &, 4, § from the obtained system of equa-
tions.
For this reason let us invert the series and write parameters £, 4,  in the form

K = KoMy +Ko10fl+Koo1Ms+ Ky 10Mgh + Koy AM
+K101mgms+K200m§ +K020ﬁ2+K002m52 + ...
A= imomg*‘ﬂm0ﬁ+4001ms+/1110mgﬁ+;~101mgms
(5.18)
2 — .
+ A200ME + Ag20l> + Ago M+ . ..
9 = \9100mg +9010ﬁ+9001ms+\91101ngﬁ+901lﬁlns

2 =2 2
+3101n1gm5+9200n1g +9020n ‘i‘\goozn'lji + ...
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Substituting expressions (5.18) into the obtained parametrical equations we can obtain all
coefficients «;;, A, 3ijx. For example, using the equations (5.3), (5.5), (5.7) and (5.10), we

obtain:

A100 = Aoo1 = Ao1t = Ar10 = 4101 = 0,

. 4 1B
TR T 6 (1B
A L _Lpa-pY
020 — 9 (1_B4)25 002 — 4 (l_ﬁb) E]
(5.19)

Koio = Koot = Ko11 = K110 = K200 = Ko20 = Kooz = 0,
‘ _ 1 4 B?
R A T )
3100 = 3010 = 9110 = o011 = Y101 = S200= 9020 = 9002 =0,

31-p¢
Yo =31 ps

Substituting (5.19) into (5.18) we have:
R 4 1 B . 8 B? 2
PR e == T
1—/?4
12
+4ﬂ [
1 4 B? ~

K = 1 1 e 5.20

k l_ﬁ(:”n + 54 Bé)mgn+ ( )

o 31-p

3= 5 r_‘ﬁms‘F )

and substituting further (5.10), with (5.3) taken into consideration, we obtain the required
final form of the limit surface equation:

1 2 L 1)
—B8%In -~
m = ﬂ 815" T3 B“)( b “ﬁ)
MY, 8 [ 1Y
“Tea- ™ ot ﬁ)
2 1
ﬁ“ﬁ)(l ﬁ“’)( -/ Zmﬁ)m‘? 20

ﬁ(1~ﬁ) 20 1) 2
Ty ( n—p lnﬂ)m
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Using the Trefftz method (5.15), (5.16) we obtain finally a similar equation

IR 2 N 31-pY
ar = In g g “3(1—B‘*)(""'82 to E) T o
86? 1\ 1 B 1B BB+ )
"9<1~ﬁ4>2<””ﬁ2’“ﬁ) ”3(1*5“30436)[3”” - ] (522

2 1 2 ﬁz(l‘ﬁA) 210 1 2
x(n—-ﬁ !n—ﬁ-)mg— 4(1—~[3")(n_ﬁ mB)ms -

Equations {5.21) and (5.22) determine the limit surface for a tube in an explicit way:
(5.21) for mean approximation, (5.22} for the Trefftz method of fulfillment of boundary
conditions. They may be applied immediately to determine the limit carrying capacity of an
isostatic pipe-line; in the case of a hyperstatic one they may be used to find possible plastic
collapse modes.

The sections of the limit surface are shown in Fig. 2.

o] TJ—-
Q64—
Qm (mean pressure)
S . q, (Trefftz’s method}
05— R Fw=ms=mq
! ] | i
o4 31 53 53 54
Mg
Fic. 2

6. AN EXAMPLE AND A DISCUSSION OF CORRECTNESS OF THE
SOLUTION

The accepted assumption of reaching the limit carrying capacity at the full plastification
of the whole section leads in consequence to incorrectness in fulfilling the boundary
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conditions for stresses g, and 1,o. Using, for example, the first way described in Section 3,
at the inner radius only the integral conditions (4.19) are fulfilled.

Let us now analyze the order of discrepancy between the mean value of stress o, and its
real value at the inner radius, and calculate the deviation of stress 1,4 from zero. Calculation
will be done for ratio of radii § = 0-5, parameters & = A = § = 01, and corresponding
values of loads:

i = 00689,
m, = 00960, (6.1)
m, = 0-0934.

The real distribution of stresses o, and 7,4 at the inner radius is obtained from formulae
(4.26), whereas the mean value of pressure is obtained from (5.10). The results are shown
in Fig. 3.

/2 " 3m/2 2/

FiGg. 3

Taking the difference between the real and the mean value of pressure as a measure of
error, it is found that in our case the error does not exceed 2 percent. When the parameters k
and 1 increase the value of the error also increases, but—on the other side—for pure bend-
ing, pure torsion etc., is equal zero again.
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AbcTpakT—Llenbro paGoThl SABIAETCS ONPENE/EHHE IPENEIbHOIO COCTOSHUS TPYGbl, MONBEPXKEHHOMI
YeTbIpEXKpATHOH KOMOWHALMM HECHMMETPHYECKMX Harpy30K: BHYTPEHHEMY MAABJEHUIO, KDPYYEHHIO,
H3rubarolieMy MOMeEHTY M oceBoi cuiie. CHcTeMa Beex ILUECTHAAUATH YPaBeHMH TE€OPHM ILIACTHYHOCTH
CBOAMTCA K TPEM, IIyTeM BBeACHUs AbyX GYHKUMI HaTpskeHus ¢ ¥ ¥ ¥ Moayns rnactudHoctn H. CucteMa
pelaeTcs MeTOMOM TPOMHBIX BO3MYIUEHMH, IIPH NIPENNIONOKEHUH, YTO M3rub, KpyYeHHe H pacTsKeHue,
BbI3BIBAIOT HEOObLIOE BJIMAHME HA MCYEPTIAHUE HECYLLEH CIIOCOOHOCTH TPYOBI, TOABEPKEHHON BHYTPEHHEMY
AABJICHUIO.



