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Abstract-The object of the paper is to analyse the limit state of a tube subjected to quadruply-combined non
symmetric loadings: internal pressure, torque, bending moment and axial force. The system ofall sixteen equations
of the theory of plasticity is reduced to three by introducing two stress functions 1/;, 1/1 and plastic modulus H. It is
solved by means of triple perturbation method under the assumption of smaIl influence of bending, twisting and
tension on the load carrying capacity of the tube subjected to internal pressure.

1. INTRODUCTION

PROBLEMS of thick-walled tubes subjected to combined loadings in the plastic range have
been given much attention in technical publications. However the problem of the simul
taneous existence of pressure, bending moment and torque which is so important for
practical applications has not as yet been solved; all three-dimensional pipe lines are as a
rule exposed to just this kind of combined loading, The problem belongs to the category of
non-symmetrical problems of the theory of plasticity. Solution of a general circularly
symmetrical case: axial force, internal or external pressure, torque as well as tangential
pressures-axial and circumferential, was given by Zyczkowski [9]. A detailed analysis,
followed by deriving effective formulae for stress distribution and limit surface for cases of
three-fold combined load, i.e" torsion, tension and pressure difference has been carried out
by Skrzypek and Zyczkowski [6]. The limit carrying capacity of a thick-walled tube in a
similar case of load was also studied by Panarelli and Hodge [3]. This however, was limited
to general formulae in integral form and numerical calculations for a few well-known
individual cases.

Mrowiec and Zyczkowski [1] have discussed the elastic carrying capacity of a thick
walled pipe-line subjected to internal pressure and bending moment. A complete solution
for the plastic range considering the effect of bending as well as tension upon the limit
capacity of a tube subjected to internal pressure has been given by Zyczkowski [11].

Problems of simultaneous bending or torsion and tension of bars of various cross
sections have been discussed by Zyczkowski [10] and Wnuk [8].

Using the method ofsmall parameter, Piechnik [4] has given effective solutions covering
the effect of bending upon the limit state of a twisted bar of circular cross section, and
Piechnik and Zyczkowski [5] have solved the reverse case of the effect of torsion on the
capacity of bars subjected to large bending. Classification and a detailed review of solutions
of combined loadings problems in the theory of plasticity is given by Zyczkowski [12].

This paper-generalizing the paper [H]-aims to analyze the case of four-fold com
bined load of thick-walled tube: internal pressure, bending moment, axial force and torque
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in plastic state, as well as to obtain solutions by means of the extended method of small
parameter.

2. ASSUMPTIONS

In this paper we shall deal exclusively with the analysis of a purely plastic state, namely,
assuming full plastification of the entire cross section of the tube. This assumption being
fulfilled in particular cases (pure bending, tension, internal pressure or torsion) is not
strictly retained in the case of combined load. In fact, when reaching the limit carrying
capacity, some parts of the section still remain in the elastic state. In consequence, it leads to
a discrepancy in fulfilling the boundary condition at the inner radius of the tube. These
discrepancies however are small and will be discussed in detail later on.

Hencky-Ilyushin's or Levy-Mises' theory of plasticity will be applied in our solution
(with purely formal substitution of strain velocities instead of strains).

The material is assumed to be perfectly plastic, incompressible and obeying the Huber
Mises-Hencky's yield condition.

Our considerations will be carried out in cylindrical coordinates r, e, Z (Fig. 1), remem
bering that in our case the stresses and strains are independent of the z coordinate.

:-----e
I

FIG. I

With the above assumptions all 16 equations of the theory of plasticity will be used:
equations of equilibrium

aO'.':+~ OTro+ (]r-(]O = 0,
or r oe r

yield condition

ih:r: 1 aTo: Trz-+--+- 0,or r ae r
OTrO 1 O(]O 2Tro-+--+- 0:or r ae r

(2.1)

(2.2)
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ao being the yield point at uniaxial tension, physical relations between stresses and strains

cp(ar-aO) = Br-Bo,

cp(ao-az) = Bo-Bz,

(2.3)

2qn:ro = frO,

2cpTrz = frz;

cp is the variable plastic modulus; Bij stands here for strains (Hencky-Ilyushin) or strain
velocities (Levy-Mises), respectively;
incompressibility condition

compatibility conditions [2]

a
2

(Bz )aear -; = 0,

~ (Paz +~ OBz _ °
r 2 ae2 r ar - ,

1 a
2
er 1 a

2
1 a (2aeo) 1 aer

r 2 ae2 - r 2 arao(r)!ro)+ r 2 ar r ai --,: or = 0,

~[~ ~(r)!oz)J -~-(~)!rz) = 0,
ar r or oroe r

a2 a2

a(2)!oz- orae(r)!lJz) = o.

(2.4)

(2.5)

3. BASIC EQUATIONS

The solution of the set of equations (2.1)-(2.5) is possible owing to the fact that the first
three compatibility conditions determine uniquely the strain ez

(3.1)

Introducing the dimensionless radius p rib, parameters proportional to curvature K,

and axial extension A, respectively, and remembering that for the system of coordinates on
Fig. 1 the angle 00 = 0, the final result is

Bz = A+Kp cos (1 (3.2)
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(3.3)

Let us now assume, dimensionless stress functions ¢ and t/J so that the conditions of internal
equilibrium (2.1) are fulfilled identically:

20"0 (1, 1 .. )
0"r =-;;3 p¢ +i;¢ ,

20"0,/,,,
0"0 = )3'1/'

20"0( 1., 1 .)
'rO = )3 p¢ - p2¢ ,

20"0 1 .
'rz = )3 Pt/J,

where primes represent differentiation with respect to p and dots with respect to e.
By using relations (2.3), as well as the incompressibility condition (2.4), a formula for the

stress O"z is obtained

(3.4)

where the dimensionless modulus H proportional to qJ was introduced for convenience

20"0
H =---qJ

)3
(3.5)

The stress functions ¢ and t/J, as well as the modulus H, determine the state of stress and
strain in the discussed problem.

Let us now substitute the relations (3.3) into the yield condition (2.2). After a few
transformations and rearrangements, the first of the three required equations for ¢, t/J and H
is obtained as

{( ¢,,_~¢,_~¢ .. )2 +4[(~¢.,_~¢.)2 + (t/J')2
P p2 P p2

+ Ut/J·) 2J - I} H 2+ 3(K2p2 cos2e + 2Kpi cos e +;.2) = O. (3.6)

Another equation is obtained from the fourth compatibility condition (2.5) by performing
the required differentiation and considering (2.3), (2.4) as well as (3.2) and (3.3)

(
82 8 8

2
) [( 1 1) Jp2_+3p___ ¢"--¢'--¢" H

8p2 8p 8e2 p p2

+4(~~+~) [(~¢" -~¢')HJ = 08p8e 8e p p2

(3.7)
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(3.8)

The two last ones, not yet utilized conditions of compatibility (2.5), contain only strains }'rz

and roz' Expressing them in terms ofthe functions <p and H, two equations are obtained:

(
8 2 8

2
) , ( 8 8

2
) [ 1 'J-1-P8p - P8p2[HljJ] + 8e - p8p8e Hr/ - 0,

(
82 8) 8

2
[ 1 JP8p8e 8e [HljJ'] +ae2 HpljJ' = °

The principal determinant of the set of equations (3.8) equals zero since

(I- P;p _p2;;2);;2-(P8~~e+;e)(:e-P8~~e) = °
Thus the equations (3.8) may be written in the following way:

(1- p;p){(1+ P;p) [HljJ'] + :e[H~ljJ-]} = 0,

:e{( 1+P;p) [HljJ'] +:e[H~ljJ-]} = 0,

and the solution with respect to the expression in braces { } is:

(I+ P;p)[HljJ']+:e[H~ljJ] = Cpo

Constant C represents the dimensionless unit angle of twist, since

Cp = (1 +P;p) [-qn oz ] + :e [qn rz],

and since for pure torsion

(3.9)

(3.10)

(3.11)

(3.12)

then

'Yoz = p9, }'rz = 0,

C = -9

Finally, equation (3.11) becomes:

( 1+P;p) [HljJ'] +:e[H~ljJ] +9p = O.

(3.13)

(3.14)

The system of non-linear, second or fourth order partial differential equations (3.6), (3.7),
(3.14) determines the stress functions <p and ljJ, as well as the plastic modulus H in the dis
cussed problem.

4. SOLUTION FOR THE CASE OF HIGH INTERNAL PRESSURE

The solution of the basic system of equations (3.6), (3.7) and (3.14) is obtained by means
of small parameter (perturbation) method, assuming a small effect of bending moment,
axial force and torque on the limit carrying capacity of a pipe-line subjected to internal
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pressure. This method allows to reduce non-linear differential equations to simple linear
equations; furthermore, apart from linearization it causes a separation of the system of
equations.

We present namely the solution as series of following parameters: K~proportional to
curvature, A~to unit extension, 9~to unit angle of twist. In the limit state of the tube
considered, these parameters may be large, but finally we shall obtain series of parameters
KID, AID and 91D, where the constant D corresponds to internal pressure and is also suitably
large. Thus KID, AID and 91D may be considered as small.

We assume the solution in the form:
cx., 00 00

rP = I I I rPijk(P, ())KiAnl,
i~O j~O k~O

L' 00 !Xl

H = I I I Hijk(P, ())K
iAj9k,

i~O j~O k~O

00 oc oc

t/J = I I I t/J ijk(P, ())KiAj9k,
i~O j~O k~O

whilst in the case of pure internal pressure in plane strain condition we have:

rPooo = ~p2ln p_!p2
,

(4.1)

(4.2)
D

Hooo = 2'
P

t/Jooo = 0,

where D is an indeterminable constant in the fully plastic state. Equations (4.2) correspond
to the classical circularly-symmetrical plastic solution. Much more complicated non
symmetrical plastic collapse modes were discussed in the paper by Zyczkowski and the
present author [7J, but we do not use them here; they have no influence on the limit carrying
capacity of the tube.

In order to solve the basic set of equations we begin with equation (3.14). Taking into
account that the zero approximation of the function t/J equals zero, the subsequent functions
t/Jijk in terms of Hi-I,j.b Hi,j-I.k as well as Hi,j.k- I can be obtained successively from this
equation. Thus for particular corrections of function t/J we get equations of the type:

The general solution of the above equation is assumed in the form of Fourier series:

t/J ijk = I fn(P) cos n() + lfI ijk(P, ()),
n~O

(4.3)

(4.4)

lfIijk(P, ()) is a particular solution of the nonhomogeneous equation (4.3). Performing the
required differentiations, the following equation for function fn(P) is obtained:

(4.5)
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and then:

j,,(p) = Cpm
, m = n:.J(1 +n1

).

Substituting (4.6) into (4.3) we obtain finally:

00

t/!iik = L (Cnlpl-J(l +n
2

) + Cn2 p1+J(l +n
2

» cos n8 +V/ijk(P, 8).
n=O

1209

(4.6)

(4.7)

(4.8)

Now, we shall proceed to the corrections of the function <p. Those can be obtained
subsequently from equations (3.6). Note that by substituting <Pooo and t/!ooo into (3.6) the
expression in brackets equals zero, thus

,A.," 1,A.,' 1 ,A.,"
0/000 - -0/000 - -0/000 = 1.P p2

From this equation we can obtain successively <Piik in terms of function Hi-l,i,k' H i,i-l,k'

Hi,i,k-l as well as t/!i-l,i,b t/!i,i-l,b t/!i,i,k-l' In this way we obtain equations ofthe type

<P'/jk - ~<P;ik - ~<Pijk = kk(P, 8).
P P

The general solution is assumed, similarly as before, in the form of a series:

00

<Plik = L fn(P) cos nO + ¢ijk(P, 0);
n=O

(4.9)

(4.10)

(4.11)

and for the function fn(P) we have:

." 1., n
2

• 0In -- In +2 In = .
P P

Upon solving the characteristic equation and substituting it into (4.10) the final solution is
obtained:

00

+ L [CnlP cos (.J(n2 - 1) In p)
n= 2

(4.12)

where <Piik is a particular solution of nonhomogeneous equation (4.9).
In order to determine the functions Hiib let us consider equation (3.7), Substitution of

<Pooo into this equation will make the entire second term equal to zero and considering (4.8),
H lik can be obtained in terms of <PI-l,i,b <PI,i-l,b <PI,i,k-1 by means ofequations of the type:

H" 3H' 1 H" • ( 0lik +- ijk - 2" iik = Jijk P, ~
P P

Assuming, as before, the general solution in form of a series

00

H ijk = L j,,(p) cos n8 +Bijk(P, 8);
n=O

(4.13)

(4.14)
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and solving the equation with respect to function f,,(p)

3 n2

I:' +- I: +2 In = 0 (4.15)
P P

the following solutions for successive corrections of function H are finally obtained:

CO2 (C ll C12 )Hijk = COl +-2 + -+-Inp cose
p p p

+ n~2 [C;l cos (J(n
2

- 1) In p) (4.16)

Cn2 . J 2 ] -+P sm ( (n -1) In p) cos ne +Hijk(P, e),

where llijk(p, e) is a particular solution of nonhomogeneous equation (4.13).
Expressions (4.7), (4.12) and (4.16) determine the state of stress and strain in the problem

under consideration. Now we shall apply the boundary conditions.
On the outer radius we expect zero stresses:

p = 1; (4.17)

introducing stress functions (3.3) we have:

<!>ijk( 1) + <!>ijk( 1) = 0,

<!>ijk(1)-<!>ijk(1) = 0,

l/tijk(l) = 0

On the inner radius only conditions in integral form could be fulfilled:

1 f2rr
- (Ir de = -p,
2n 0

~f2rr 'rode = 0,
2n 0

(4.18)

(4.19)

where p is an internal pressure existing in the tube.
Most of the conditions (4.19) are automatically fulfilled in most cases, and the number of

equations (4.18) is as a rule not sufficient to determine all constants in (4.7), (4.12) and (4.16).
In particular cases without bending, the condition of circular symmetry can be applied

(4.20)

and the remaining coefficients can be obtained from displacement conditions

(4.21)

because

(4.22)
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Using the formulae (4.7), (4.22) and (4.16), and considering boundary conditions (4.18)
(4.21), corrections of the functions cP, 1/1 and H can be obtained successively. Some of them
equal zero, as it can easily be shown, so that, confining ourselves to the terms of the second
order only, we have:

cPlOO = cPOlO = cPOOI = cPOII = cPlOI = 0,

H loo = H olo = H ool = HOI! = H iol = 0,

1/1000 = 1/1100 = 1/1010 = 1/1110 = 1/1101 = 0.

For the other corrections different from zero we obtain:

+ 20:D2 [p cos (.J3 In p)+ J3 p sin (.J3 In p) - p8 ] cos 28,

3 2 1 6
cP020 = COl +16D2P -16D2P ,

1 2 1 8
cP002 = COl - 24D2P - 96D2P ,

(
1 1 7)

cPIIO=COI + CIIP+2D2plnp-12D2P cos8,

1 4
1/1001 = COl - 8DP ,

as well as:

CO2 p4

H 002 = 7+2D'

CO2 3 2
H 020 = COl +7+ 2DP ,

CO2 3 4 C II
H200 = COl +~2+----=p +~cos8

P 4u P

3[2 3J3 ]+13D 2p4-3cos(.J3Inp)+T3sin(.J3Inp) cos28
. P P

~ [Cnl (.J( 2 Cn2
. .J 2 ]+ L.. -cos n -l)lnp)+-sm( (n -l)lnp) cosn8,

n=3 P p

CO2 (5 3 1 C11)H lIo = COl+~+ -p +--+~cos 0
p2 2D Dp3 P

+ f [C
nl

cos (.J(n 2-1) In p)+ C
n2 sin (.J(n2 -1) In P)] cos nO

n=2 P p

(4.23)

(4.24)

(4.25)
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Constants Cal, CO2 ,''' Cnl , Cn2 in (4.25) remain indetermined because there are no
boundary conditions for function H. Some of them could be determined by calculating the
corrections of higher order for functions 4> and t/J and applying suitable conditions (4.18).

Based on expressions (4.24), and considering (3.3) and (3.4), we are able to determine the
stresses. Constants Cal and C II have no effect on the distribution of stresses, which can be
presented as follows

20"0 [ {I 6 3[1 . 2')3..
O"r = -/- Inp+ l'(l-p )+52 -cos(~3Inp)-~slll(~3Inp)

y3 p p

J }
2 '2 9 2

6 K 3 41. I 6
-p cos20 2+S(l-P )2+n (l-P)2

D D D

I ( I 5) K). J+ 2 p- p cos 0 D2 + .. , ,

(4.26)

Parameters K, A, 9 in expressions (4.26) do not appear independently but in the form of
relations KID, AID and 91D where D is the indeterminable constant from (4.2). From now
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on we shall use new relations for the sake of convenience:

1213

KID = R, AID = ~, BID = 8. (4.27)

Applying (4.25}-(4.26) and introducing physical relations (2.3), formulae for strains could
also be obtained, remembering that in our case the strain 8z is given by (3.2).

5. LOAD ANALYSIS: INTERACTION (LIMIT) SURFACE

Now we proceed to determine the external loads which cause the fully plastic state of
the tube.

The axial force can be obtained from formulae:

(5.1)

(5.2)

(F being the cross-sectional area of the tube), and introducing dimensionless values and
taking (4.26) into consideration:

n =~N = f32 In ~+i( 1- f34)~ - kf32(1- f36)R 2
2naob2 f3

-~f32(1- p4)~2 --hf32(1- f36)82 + ....

The dimensionless axial force f32 In 1/{j relates to the pure internal pressure in case of plane
strain. It will be more convenient to use a reduced value of the axial force:

n = n - {j2 In ~ = i(l - {j4)~ - k{j2(1 _ {j6)R2
{j

_ ~{j2(1_ {j4)~2 --h{j2(1- {j6)82 + ...,

(5.3)

(5.4)

which, assuming small parameters R, ~, 8, will also be small. The bending moment is
calculated from formulae:

M g = ffFrazcosOdF = b3 ffJl p2 dp L2rr
azcosOdO,

from which, considering (4.26) and performing required integrations, we obtain a dimen
sionless expression:

2.)3 6 A 2 6 --mg = --b3Mg = (1- f3 )K- f3 (1- f3 )nA+ ...
nao

Finally the torque

M s = f LTOzr dF = 2nb3 L1

Tozp2 dp,

or, in dimensionless form:

(5.5)

(5.6)

. (5.7)
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where Wo is the elastic section modulus in torsion

(5.8)

Some complications are connected with calculation of internal pressure. The assump
tion of full plastification of the whole cross section of the tube leads to variable normal
stresses (Jr at the internal radius f3. Also, tangential stresses Tro are not strictly zero along the
inner perimeter. So we arrive at the problem of how to apply the results obtained by means
of the perturbation method (4.26) for variable pressure along the inner perimeter to a pipe
line loaded by constant normal internal pressure. It can be done in various approximate
ways.

The simplest way is to take mean values of the obtained expressions for stresses (Jr and
Tro. The internal pressure is now calculated as follows:

1 f. 2

"Pm = - 2n 0 (Jrlp=/J dO (5.9)

where Pm indicates mean value of the pressure. Introducing the dimensionless pressure qm
and performing the required integration we have

.J3 1 1 6 A 2 3 f34 12 1 f36 A2qm = -Pm = In --8(1- f3 )K -8(1- )11. -n:(1- )8 + ...
2(Jo f3

(5.10)

Expressions (5.2), (5.5), (5.7) and (5.10) represent the limit surface in parametrical way, the
parameters being K, X, [) and, additionally, the ratio of the radii f3.

Taking instead of the mean value of P the lower bound of( - (Jr) at p = f3 we may obtain
a lower bound of the internal pressure. Such an approach was used in the paper by
Zyczkowski [11].

The obtained general integrals may also be applied to the formulated problem using the
Trefftz method, since the differential equations are here satisfied exactly in the sense of the
perturbation method and there exists some difficulty with the boundary conditions. Instead
of previously used boundary conditions (4.17) and (4.19) we shall now introduce the con
dition of least square deviations, namely, minimum of the integral expression

(5.11 )

where indices T indicate the solutions obtained by the Trefftz method and (Jr(I), Tro(I),
(J/f3), Trif3) are determined by actual exact boundary conditions, namely,

(Jr( 1) = TrO( 1) = TrO(f3) = 0

(Jr(f3) = - P = const.
(5.12)
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(5.13)

Introducing (4.12) and (5.12) into the formula (5.11) and applying the condition of the
minimum of the function F(Cij), we obtain

2Q[1 {1_ p2 [-3C21 +-/3C22 (/31 ) 3C22 +-/3C21 . (/31 )
(lrT = I np+ --+ cosv np - sm V np

v3 8 p p

__36J 20}A2+3(I-p4)12+1-p6112+
szp cos K 8 It 12 1:?

{
I [P(l - P

5
) 1 5J }A A J+ "2 l+P- p-P cos () KA+ ....

Constants C21 and C22 may be calculated from the conditions

01" aF
~=O, ~=O, (5.14)
aC21 aC22

They have, however, no influence on the loadings. Expressions for the other stresses (lo, (lz

and !rO may be obtained in a similar way.
Introducing, as previously, dimensionless notations and integrating, we can now

determine the loads. Internal pressure qT, axial force nT and torque msT are exactly the
same as in formulae (5.3), (5.7) and (5.10),

(5.15)

Only for the bending moment do we obtain a slightly different formula

mgT = (1 - P6)R - [(1- P8
) - P(1- P)(1+P5)JR~+ ... (5.16)

Expressions (5.15) and (5.16) represent the parametrical equation of the limit surface
obtained using the Trefftz method, the parameters being as previously K, ~, [) and ratio of
radii p.

For some practical purposes it may be more convenient to determine the limit surface by
the equation in an explicit form

q = q(n, m" mg), (5.17)

which is obtained by eliminating the parameters R, ~,[) from the obtained system of equa
tions.

For this reason let us invert the series and write parameters R, ~,[) in the form

R = KlOOmg+K010n+K001ms+KlIOmgn+KOllnms
2 -2 2+K101mgms+K200mg +K020n + Koozms + ...

X= AlOOmg+ A01 on + Ao01m, + AllOmgn + )'10Imgms

+ Azoom; + )'ozon2 + )'002m; + ...

.9 = .9100mg+8010n+.9001ms+8110mgn+.901Inms

+81OImgms+8zoom; +8020nz +800z m,; + ...

(5.18)
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Substituting expressions (5.18) into the obtained parametrical equations we can obtain all
coefficients Kijk' Aijk, 9 ijk · For example, using the equations (5.3), (5.5), (5.7) and (5.10), we
obtain:

KOIO = KOOI = KOII = KIlO = K200 = K020 = K002 = 0,

. 4
AOlO = 3(1- j34) ,

. 8 j32
1'020 = 9 (1- j34)2'

. 1 j32
A200 = 6" (1 _ j34)(1_ j36),

. 1 j32(1_ j34)
A002 = 4" (1 _ j36) ,

(5.19)

Substituting (5.19) into (5.18) we have:

~ 4 _ 1 j32 2 8 j32 -2
A= 3(l-j34t+6" (1- j34)(1-j36t g +9 (1- rJ4)2

n

1 21 - j34 2
+4"j3 1_j36ms +...,

A 1 4 j32 _
K =~lj6mg +"3 (1 - j34)(1 _ j36t gn + ...,

~ 31-j34
9 = "21= j36 mS + ...,

(5.20)

and substituting further (5.10), with (5.3) taken into consideration, we obtain the required
final form of the limit surface equation:

(5.21)
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(5.22)

Using the Trefftz method (5.15), (5.16) we obtain finally a similar equation

1 1 2 2 ( 2 1) 2 3(1- /34)2 2

qT = In 13- 8(1- /34rg - 3(1- /34) n- /3 In Ii - 16(1- /36rS

8/32 ( 2 1) 3 1 [/32
1- f38 - /3(1- /3)(l +/35)J

- 9(1- (34)2 n- f3 In 13 - 3(1- /34)(1- /36) Z-- 1- f30 -----

(

2 I) 2. f32.(1-/34)( 2 1) 2X 11 - P In Ii mg - 4(1 _ /36) n- P In 13 ms - .•.

Equations (5.21) and (5.22) determine the limit surface for a tube in an explicit way;
(5.21) for mean approximation, (5.22) for the Trefftz method of fulfillment of boundary
conditions. They may be applied immediately to determine the limit carrying capacity of an
isostatic pipe-line; in the case of a hyperstatic one they may be used to find possible plastic
collapse modes.

The sections of the limit surface are shown in Fig. 2
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FIG. 2

6. AN EXAMPLE AND A DISCUSSION OF CORRECTNESS OF THE
SOLUTION

The accepted assumption of reaching the limit carrying capacity at the full plastification
of the whole section leads in consequence to incorrectness in fulfilling the boundary
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(6.1)

conditions for stresses (Jr and 'rB' Using, for example, the first way described in Section 5,
at the inner radius only the integral conditions (4.19) are fulfilled.

Let us now analyze the order of discrepancy between the mean value of stress (J r and its
real value at the inner radius, and calculate the deviation of stress 'rB from zero. Calculation
will be done for ratio of radii f3 = 0'5, parameters Ii: = X = ,9 = 0'1, and corresponding
values of loads:

n= 0'0689,

mg = 0'0960,

ms = 0·0934.

The real distribution of stresses (Jr and 'rB at the inner radius is obtained from formulae
(4.26), whereas the mean value of pressure is obtained from (5.10). The results are shown
in Fig. 3.
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FIG. 3

Taking the difference between the real and the mean value of pressure as a measure of
error, it is found that in our case the error does not exceed 2 percent. When the parameters Ii:
and Xincrease the value of the error also increases, but---on the other side-for pure bend
ing, pure torsion etc., is equal zero again.
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suggestions and advice which were of great help in writing this paper.
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A6cTpaKT-UeJIhlO pa60ThI HBJIHeTCH orrpe,l/,eJIeHlle rrpe,l/,eJIhHOrO COCTOHHIIH Tpy6h1, rrO,l/,BeplKeHHoM
'1eThlpexKpaTHoH KOM6I1Hal\1I11 HeCIIMMeTpll'ieCKIIX Harpy30K: BHyTpeHHeMy ,l/,aBJIeHIlIO, Kpy'leHIlIO,
H3rll6alOIl\eMY MOMeHTy H oceBOM CIIJIe, CllcTeMa Bcex llIeCTHa,l/,l\aTII ypaBeHIIH Teoplllf IIJIaCTII'iHOCTII
CBO,l/,IITCH KTpeM, rryTeM BBe,l/,eHHH ,l/,hYX <!>YHKl\HH HarrpHlKeHIIH c/> H .p II MO,l/,yJIH rrJIaCTII'iHOCTH H, ClIcTeMa
pewaeTcH MeTO,l/,OM TPOHHhlX B03MYll\eHIIH, rrpll rrpe,l/,rrOJIOlKeHIIII, 'ITO 1I3r1l6, Kpy'ieHlIe II pacTHlKeHlIe,
Jlhl3hlBalOT He6oJIhlllOe BJIlIlIHlIe Ha IIC'ieprraHlIe HeCYll\eH crroco6HOCTlI Tpy6hl, rrO,l/,BeplKeHHOH JlHyTpeHHeMy
,l/,aBJIeHIlIO,


